Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0296407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422047

RESUMO

To improve animal performance and modify growth by increasing lean tissue accretion, beef cattle production has relied on use of growth promoting technologies such as beta-adrenergic agonists. These synthetic catecholamines, combined with the variable inclusion of rumen degradable (RDP) and undegradable protein (RUP), improve feed efficiency and rate of gain in finishing beef cattle. However, research regarding the impact of beta-adrenergic agonists, protein level, and source on the ruminal microbiome is limited. The objective of this study was to determine the effect of different protein concentrations and beta-adrenergic agonist (ractopamine hydrochloride; RAC) on ruminal bacterial communities in finishing beef heifers. Heifers (n = 140) were ranked according to body weight and assigned to pens in a generalized complete block design with a 3 × 2 factorial arrangement of treatments of 6 different treatment combinations, containing 3 protein treatments (Control: 13.9% CP, 8.9% RDP, and 5.0% RUP; High RDP: 20.9% CP, 14.4% RDP, 6.5% RUP; or High RUP: 20.9% CP, 9.7% RDP, 11.2% RUP) and 2 RAC treatments (0 and 400 mg/day). Rumen samples were collected via orogastric tubing 7 days before harvest. DNA from rumen samples were sequenced to identify bacteria based on the V1-V3 hypervariable regions of the 16S rRNA gene. Reads from treatments were analyzed using the packages 'phyloseq' and 'dada2' within the R environment. Beta diversity was analyzed based on Bray-Curtis distances and was significantly different among protein and RAC treatments (P < 0.05). Alpha diversity metrics, such as Chao1 and Shannon diversity indices, were not significantly different (P > 0.05). Bacterial differences among treatments after analyses using PROC MIXED in SAS 9 were identified for the main effects of protein concentration (P < 0.05), rather than their interaction. These results suggest possible effects on microbial communities with different concentrations of protein but limited impact with RAC. However, both may potentially act synergistically to improve performance in finishing beef cattle.


Assuntos
Dieta , Digestão , Bovinos , Animais , Feminino , Dieta/veterinária , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Rúmen/metabolismo , Bactérias/metabolismo , Agonistas Adrenérgicos beta/farmacologia
2.
Vet Sci ; 10(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37756100

RESUMO

Improving beef production efficiency, sustainability, and food security is crucial for meeting the growing global demand for beef while minimizing environmental impact, conserving resources, ensuring economic viability, and promoting animal welfare. Beta-adrenergic agonists and dietary protein have been critical factors in beef cattle production. Beta-agonists enhance growth, improve feed efficiency, and influence carcass composition, while dietary protein provides the necessary nutrients for muscle development and overall health. A balanced approach to their use and incorporation into cattle diets can lead to more efficient and sustainable beef production. However, microbiome technologies play an increasingly important role in beef cattle production, particularly by optimizing rumen fermentation, enhancing nutrient utilization, supporting gut health, and enhancing feed efficiency. Therefore, optimizing rumen fermentation, diet, and growth-promoting technologies has the potential to increase energy capture and improve performance. This review addresses the interactions among beta-adrenergic agonists, protein level and source, and the ruminal microbiome. By adopting innovative technologies, sustainable practices, and responsible management strategies, the beef industry can contribute to a more secure and sustainable food future. Continued research and development in this field can lead to innovative solutions that benefit both producers and the environment.

3.
Transl Anim Sci ; 4(1): 376-384, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32704997

RESUMO

A 52-d winter feeding trial was conducted to determine animal performance, utilization, and economics of pearl millet (PM) baleage, sorghum × sudangrass (SS) baleage, and "Tifton 85" bermudagrass (B) hay for lactating beef cow-calf pairs. Cone (C) and open-shaped (O) rings were evaluated for potential to minimize forage wastage. The experiment was a completely randomized design with a 3 × 2 factorial arrangement of treatments for each forage type × hay ring (3 cow-calf pairs per treatment; 2 replications per treatment). Animal response measures included cow body weight (BW) change and body condition score (BCS) over the 52-d trial, initial and final calf BW, and cow milk production at the midpoint and end of the study. Forage nutritive value parameters evaluated for each forage type included ash, crude protein (CP), in vitro true digestibility (IVTD), neutral detergent fiber (NDF), acid detergent fiber, and acid detergent lignin (ADL). Forage wastage was estimated for each forage × ring treatment as the percentage of the bale weight remaining in feeding rings at the time of bale replacement. An economic evaluation of the relative costs associated with production and utilization of each forage type was calculated. There were no differences (P ≥ 0.10) in cow BW change or BCS change among forage types, between ring shapes, or an interaction observed for these response variables. Proportion of waste from PM and SS baleage was greater (P < 0.10) than for B hay, although there was no forage type × hay ring interaction or differences between O and C hay ring treatments for forage waste (P ≥ 0.10, respectively). Cow milk production and calf BW gain did not differ among forage type (P ≥ 0.10, respectively); however, beef calves in pens containing the O ring feeder weighed 6 kg more (P ≤ 0.05) than calves whose dams were fed using C rings. The economic analysis implies that it is more costly to feed warm-season annual forage baleage to cow-calf pairs than dry hay, largely due to greater costs of production, lack of difference in animal performance responses, and less utilization of baleage compared with feeding bermudagrass hay in this trial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...